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ABSTRACT

A formula has been developed to correct laser rzaging data for the
effects of horizontal refractivity gradients. The formula requires the
values of the horizontal pressure and temperature gradients at the laser
site. The accuracy of this technique was evaluated by comparing the

formula with range corrections which were computed by ray tracing.
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I. INTRODUCTION

In recent years laser ranging systems have begun to play an important
role in the accurate determination of satellite orbits. For many
applications, such as monitoring crustal movements of the earth, position
accuracies of several centimeters or less are desirable. Atmospheric
refraction may, however, increase the optical path length to an orbiting
satellite by over ten meters at low elevation angles.

Various formulas have been proposed to correct laser ranging data
for the effects of atmospheric refraction. Based on the work of Marini
{3] and Saastamoinen [2], Marini and Murray {l] derived a correction
formula which is attractive for satellite ranging applications because
it requires only surface measurements of pressure, temperature, and
relative humidity. The accuracy of their formula was tested by
comparing it with range corrections calculated by ray tracing through
atmospheric refractivity profiles. The profiles were generated from
radiosonde measurem2nts of pressure, temperature, and relative humiditv.

Marini and Murray's formula was derived by assuming that a
spherically symmetric refractivity profile adequately (haracterized the
atmosphere. Zanter, Gardner, and Rao [4] and Gardner and Rowlett [6]
investigated the validitv of this assumption by ray tracing through
three-dimensional refractivity profiles. Their results indicate that
horizontal refractivity gradients can introduce range errors of over
three centimeters at the lower elevation angles (10° - 2n0°). 1In this
report a correction formula which partially compensates for these
sradient effects is derived. The accuracv of the formula is investigated

by comparing it with range corrections calculated by rav tracine.



II. CORRECTION FORMULA DERIVATION

Numerous formulas have been developed which partially correct laser
satellite ranging measurements for the effects of atmospheric refraction.
For many applications such as the monitoring of continental drift, fault
motion and other tectonic processes, position accuracies of better than
a few centimeters are required. Only the correction formulas developed by
Saastamoinen [2] and Marini and Murray [1] provide this accuracy at
elevation angles of 10 to 20 degrees. These formulas were derived under
the assumption that atmospheric refractivity is spherically symmetric.
This assumption holds only approximately even for the normal state of
the troposphere. The refractivity at sea level inevitably increases from
the warmer equatorial regions toward the colder climates at the poles.

In the lower troposphere the surfaces of constant refractivity acquire a
general slope toward the equator unless this is prevent . by some local
perturbation.

The optical path length will therefore be affected by the horizontal
refractivity gradients. These effects are illustrated in ray-trace
corrections reported by Zanter, Gardner,and Rao [4] and Gardner and
Rowlett [6]. The results indicate refractivity gradients induce changes
in the optical path length of as much as four to five centimeters at
ten degrees elevation.

Correction formulas which compensate for the horizontal gradients
can be dorived following an approach similar to Marini and Murray's [1].
The geometry of the laser ranging site and satellite target is shown in
Fig. 1. The optical path length between the site and target is defined
as the integral of the group refractive index along the ray path. If the

refractivity is spherically symmetric,the ray path will lie entirely in a
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plane. In this case the apparent range measured by a pulsed laser system

is given by

1 n
Ry = j dr sin 6 (2-1)

where ng is the group index of refraction and 6 is given by Snell's law

for a spherically stratified medium (see Fig. 1)

nr cos 9 = nyro €os 60 . (2-2)

n, is the phase refractive index at the laser site.
The range error is the difference between the optical range RO and
the straight-line path length Rs' If ng is expressed in terms of the

group refractivity Ng’

n =1+ 10 0 , (2-3)
g g

then the range error can te tv~itten in the form

T (r

AR = R R-l(f'{ d—jﬁ—+ l—-‘-lr—-R (2-4)
- s J T sin © sin © s * <7

To To

The first term is the velocity error while the bracketed term is the
dirference between the geometric lengths of the ray and straight-line
paths.

Since the refractivity gradients are small (see Zanter, Gardner, and
Rao [4] and Gardner and Rowlett [6]), we will assume the change in the
ray path is slight so . at we need only consider the first integral in
(2--4). Ng is expanded in a one-dimensional Taylor series about the la-.r

site
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Ng(h,p) = Ng +p -é_p— Ng + —2‘7—7 Ng + ... (2-5)

p=0 T 9 p=0
where h is the altitude above the laser site and ¢ is the horizontal
coordinate measured from the ranging site in the direction of the laser

beam trajectory. The geometry of the problem is illustrated in Fig. 1.

Substituting (2-5) into (2-4) gives

AR = SC + GC (2-6)
r b s
1 N (h,0) 1
- 196 g7 gar -
sc = 10 J dr P + J ~in © RS (2-7)
1'0 rO
m 6 = (1 88 (n, 0)0K
= = 10" £ -
6= ] 6 =10" ] J dr ——— (2-8)
k=1 k=1 ‘r
0
where
(k) ok
N (h,0) = — N (h,p) .
g p & 0=0

SC is a Marini and Murray-type correction which corresponds to a spheri-
cally symmetric atmosphere. The gradient correction term (GC) includes
the effects of the horizontal refractivity gradients.

Again, since the horizontal gradients are small, we will approximate
GC by the first term in the series, GCl. The second term, GCZ’ will be
evaluated approximately to obtain a bound on the error introduced by
the neglect of the higher-order terms. The problem is simplified by

taking the p derivative after the r integral is evaluated

r
1 N (h,p")p
= 107913 Y-
GCy 10 307 Jr dr =03 . (2-9)

”
0 p=0

o e syt ot Wbt R T
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The optical group refractivity is given by Marini and Murray [1] as

- P_, e -
N, = 80.343 £) £ - 11.3 3 (2-10)
where 7.5(T - 273.15)
o= ROy 10 2373+ (T - 273.15) (2-11)
100
£(A) = .9650 + '°ﬁf‘ + '003328 (2-12)

A A
P = atmospheric pressure (mb)
T = temperature (°K)
e = partial pressure of water vapor (mb)

A = optical wavelength in microns (530 for this investigation)

Rh

relative humidity (%).

The water va-_r contribution is small and can be neglected in the evaluation

Jo

of Gui. The variation of Ng with altitude can be determined by assuming

the atmosphere is in hydrostatic equilibrium. From the perfect-gas law,

the law of partial pressures, and the hydrostatic equation, we obtain

_dp _Mg(P - e) , hee . MgP (2-13)
dh RT RT RT
where
M = 28.966 = molecular weight of dry air
Mw = 18.016 = molecular weight of water vapor
R = 8314.36 joules (°I()-l(kg-mole)-l = universal gas corstant
g = acceleration of gravity (m/sec).

The pressure is obtained by integrating (2-13)

P = Pg exp {:ME

1
R T dh . (2-14)

1

—

Pg is the surface pressure., Although g decreases with altitude, the

*
Water vapor gradients contribute less than 1 millimeter above 10° elevation.
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effect is small and can be neglected in (2-14). The temperature T is

assumed to have a linear slope

T= Ts + Bh L8
where TS is the surface temperature and B is the temperature lap.. rate.

The integration in (2-14) using (2-15) gives
T -Mg/R8
P = Ps ('_1‘_;) . (2-16)

The group refractivity is obtained by substituting (2-15) and (2-16)

into (2-10) and neglecting the water vapor contribution,

-Mg/RB

1+ éh) (2-17)

P
= _S
Ng 80.343 £(1) 7 T
s s

The horizontal coordinate p in (2-9) is also a function of altitude.

p may be approximated by its value along the straight-line path Rs

1/2

2 2
rO 1 (ro + h)" - ro
B R Y I 2
To tan” E (r, + h)

cot E + tan E

p=x sin (2-18)

where E is the satellite elevation angle. When E is 10° or larger, the
integrand in (2-9) is significant only for h less than about 100 km. 1In
this region the square root in the argument of the arc sine can be

approximated by the first two terms in the binomial series

2 .2 [ 2
-1 h 1l cos™ E h h , 1 cos” E h
p = r, sin [. -3 S |r—={1l-5 —1 . (2-19)
0] L tan E 2 tan3 £ rg tan E \ 2 tanz £ o
-
The term ta: B in (2-19) 1is the value of p for a flat earth model. The

second term is a cor- ction for the more realistic spherical earth model.

|



It is significant only at the lower elevation angles.

l—-is determined by solving (2-2) for

The altitude dependznce of
831 0

and expanding the result in inverse powers of sin 6. (see G.rdner

sin © 0
and Rowlett [6]). The two most significant terms are
i .1 1 h
9 * _7rl
sin sin E Sin3 E r (2-2¢,)

Now substituting (2-19) and (2-20) into (2-9) and retain-ng only first- and

second-order terms in p,we have

-6 4

_ 10 3 f . (1 + 1/2cos E) ﬁ_jl!

Gy " Sin E tan E 3p” Odh Ng(h’p R sinl E roJ .
)l

The integrals can now be evaluated by using the expression in (2-17)

for N
g
Z 2\;
C 3 D(1 + l/2cos4 E) 9 PsTsKs
GCl T Sin E tan E op (PsTsKs) + 3 53
p=0 sin” E tan E 2 - Ks p=0
(2=-27
2 -6 -2

C = 80.343 £()) 7 10 = 0.915 x 19 f(2) (m)

(Mg)

2 R -6 -7
D = -80.343 f(A) — —— 10 = -6,362 x 10 f( (m)

r, (Mg?

where ro is taken as the nominal earth radius (6378 km), and g has been

set equal to 9.784. The correction term GCl is given in meters when the

listed values for C and D are used and the derivatives are in units of

m_l. The value or Kq depends on the temperature lapse rate B. Marini

and Murray [1! derived an empirical expression for KS by numerically
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integrating through atmospleres of the U.S. Standard Atmosphere Supplements

(1966) and applying a linear regression fit to the values

KS 1.163 + 0.00968 cos 286 - 0.00104TS + 0.00001435PS (2-23)
@ = colatitude of laser site
The first term in (2-22) is typically three to four centimeters at 10°

elevation while the second term is generally one centimeter or less. At

10° elevation roughly two~thirds of the contribution of the second term

arises from the expansion of sii 5 (Eq. (2-20)). The remaining contribution
is from the spherical earth correction factor in the expansion of o
(Eq. (2-19)).

The error introduced by neglecting higher-order terms of GC can be

estimated by obtaining a bound on the s:cond term in the series

@ . 2
-5 h,
=10° ,2 N (h,p%)e l
GC — dh B———
2 2 .2 7 sin B .
af: |D=O
1078 32 7 ,

dh thg(h,o' (2-24)

2 sin E tan® E 3p” J0 ' .
p’=0

This integral can be evaluated by substituting the e:; ression given in

2-17) f£ N
()org

22
. 80.343 £(3) R -6 32 [PsTSKg
6C, ° 7 3100 5\ %x (2-25)
sin E tan” E (Mg) A s
p=0
. 2 2\
i ot
2.029 £(0) 3% FsTiKg
6, 2 -3 \T-K
sin E tan” E 3p°~ \” s/i

. . . . -2
G02 s given in meters when the derivative is in units of m

o
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III. CALCULATION OF GC1

Data used in evaluating GC1 were obtained from radiosonde balloon
releases of Project Haven Hop T [5]. Figure 2 displays the locations »f the
radiosonde release sites. Most sites are seen to be centered about the
Washington, D.C. area and to be displaced 100 to 150 kilometers from one
another. The radiosondes were released within a few minutes of each
other at various times throughout the night and day during January and
February of 1970. The balloons monitored pressure, te perature, and
relative humidity periodically during their ascent through the atmosphere.

Equation (2-22) is based on a spherical earth model. Data used in
evaluating (2-22) should reflect this modeling, i.e., values nf pressure
and temperature should be obtained from a spherical surface. The raw
radiosonde data violated this modeling in twc respects. First, for any
given group of release sites, each site was a different altitude above
sea level. Second, since each ballouon was monitored only periodically,
raw data points were arbitrary with respect to altitude and to the other
balloons in the group.

These inconsistencies were removed from any group of balloon release
sites by selecting the altitude of the highest site as the first altitude
at which radiosonde data would be available from all stations. Typically
this altitude was 140 meters above sea level. Data from the other balloons
in the group were interpolated to this altitude using the interpolation
procedures described in [1] and [4] for ray-tracing applications.

Method I Two methods were used to evaluate (2-22), or, more

29
., P.TXK

specifically, the derivatives 2 (PSTSKS) and f— =23

%0 g E—:fig . Method 1

approximates the derivatives as
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P.T K, - P.T.K
g% (Pquxs) .11 1p 000 (3-1)
i 01
and '
2.2 2.2
B (PsTsKs) U hhS PoToKo\ 1 (3-2)
p {2 -~ Ks‘ \2 - Kl 2 - KO, pOl

where the subscript 0 indicates the ranging site and the subscript 1 an

outlying site located beneath the laser beam trajectory. is the

o1
distance between the two sites (see Fig. 1). The approximate derivatives
in (3-1) and (3-2) become more accurate as 001 approaches zero.

Equations (3-1), (3-2), and thus (2-22) could be evaluated using
the raw radiosonde data interpolated to the height of the highest site.
For the case where the laser site is located at 54, evaluations of GC1

would be restricted to azimuths corresponding to those of the peripheral

radiosonde sites. In addition the error in GC, would be a strong function

1
of the error in any single radiosonde measurement.

These limitations were partially overcome by modeling the interpolated
pressure and temperature of a group of sites using a polyromial regression
analysis. The interpolated pressure or temperature was chosen as the
dependent variable, and colatitude and longitude the independent variables
of a multiple regression fit., The regression generated a polyncmial
giving surface pressure or temperature as a function of location. Note
two regressions were performed for each group of sites, one for temperature
and another for pressure. 1In this manner a pressure surface and a
temperature surface were created in the vicinity of the laser ranging
site at the altitude of the highest site. These surfaces vieclded the

least squares fit to the interpolatec -adiosonde data. The polynomial

models employed in the regression analysis are given by (3-3) through (3-5)
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below
2
= . in & o 3 o ) -
M Mr + 9 Me + ¢ sin 8 M¢ + 6¢ sin 6 “8¢ + 8 Mee
2 2
+ in© 8 + M 3-3
¢” sin o0 (3-3)
M= Mr + 0 o M6 + ¢ sin 8 M¢ + 6¢ sin 6 - M9¢ (3-4)
M= Mr + 06 - a8 + ¢ sin 6 - M¢ (3-5)
where
M = pressure or temperature

Mr’"e’"¢’Me¢’Mee’M¢¢ = regression coefficients

6

colatitude = 90° - latitude

-
]

longitude.

A minimum of six data points 1S required to determine the regression
coefficients in (3-3), four to determine (3-4), and three to determine
(3-5).

Range corrections calculated by ray tracing we - compared with CCl
in order to ascertain its usefulness in correcting refraction effects
(see Section IV and Gardner an! Rowlett [6]). The partgcular polynomial
employed was chosen to be the same as the refractivity model used in per-
forming the ray traces. By using more than the minimum number of stations
required to determine a given polynomial the regression served to average
out some of the radiosonde errors (see Section VI). Data from eight
1 adiosonde stations were used for quadratic (3-3), or linear (3-5) modeling
of pressure and temperature and seven or eight stations for a linear
plus cross term model (3-4).

Equations (3-3) through (3-5) allow nressure and temperature to

be calculated at any point in the vicinity of the laser ranging site,.
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Therefore, GC1 may be calculated at any azimuth or elevation relative

to the ranging site. It is also possible to arbitrarily vary Por°

Because of its central location, site 54 (see Fig. 2) was the ranging site
for this investigation.

A typical evaluation of GC1 proceeds as follcws. A model for the
pressure and temperature surfaces is selected from (3-3) through (3-5).
The data of the appropriate number of stations (7 or 8) are then inter-
polated to the altitude of the highest station. Two multiple regressions
are performed to evaluate regression coefficients which are used to cal-
culate pressure and temperature at the ranging site and at another point
a distance o1 from the ranging site. These values are used to evaluate
(3-1) and (3-2) which are then substituted into (2-22) to yield GCl.
Method I1 Using Method II the directional derivatives (3-6) and

(3-7) are explicitly evaluated at the laser ranging site

9

— (P.TK) (3-6)

ap $s§s 0=0

3 PsTixi

3 \2- K, ’ (3-7)
p=0

The interpolated radiosonde data were used to calculate the quantities
PTK nd [PTZKZ/(Z - K)] at each releasc station at the altitude of the
highest station. These two parameters were then used as the dependent

variables of two multiple regress%ogs. The regressions generated poly-
P T<K
8's s

2 - K
s

of the two quantities was restricted to be linear or quadratic as given by

nomials expressing PSTSKs and as a function of location. The modeling

(3-8) and (3-9).

¥ o= B 4+ ¢ sin 9 « F -8
¥ Fr + F8 ¢ sin 9 I¢ (3-€)

.-
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F Fr + 6 FO + ¢ sin 8 F¢ + 64 sin © Fe + 6 F
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-

¢ 00
2 2
+ sin” 6 « F 3-
¢ 06 (3-9)
where . .
Fr’FB’F¢’F6¢’F99’F¢¢ = regression co;fgic1ents %
: PsTsKs %
F = PSTSKS or é—:—E; .

As in Method I a minimum number of three data points is required to

| b B8 PRETRER I, SRR

determine the coefficients for model (3-8) and six data points are required
for model (3-9). Error averaging in the radiosonde data was achieved by

using more than the minimum number of stations in the regressions

e Ko ek e R et e

determining (3-8) and (3-9). Eight data points were used to determine both

R0 T A

(3-8) and (3-9). Gradient corrections obtained using Method II were

compared with ray traces calculated using quadratic modeling of ;
atmospheric refractivity (see Section IV). %

The evaluation of %g is simplified by expressing eland ¢las 5
functions of p. Note that p is the horizontal coordinate measured from %
the ranging site along the surface of the earth in the direction of the g

laser beam. Due to the curvature of the earth p does not lie in a plane

: (s2e Fig. 3). For this reason spherical trigonometry must be used to

express Gland ¢las functions of p. The coordinate transformation is

given in Appendix II. The results are given in Eqs. (3-10) and (3-11)

below.
P p .
8_= cos 1 ‘cos 9, cos £u'+ sin 6, sin —glcos a (3-10) ;
1 0 r 0 r H
e e ¢
_ -1 rsin o Pol1 f
. ¢1— ¢0 + sin <in elsin - (3-11) ,
- e -
where i
GO’QO = colatitude and longitude of ranging site :
re = radius of the earth ;

»
"

azimuth of p .

01

AR, R A
A AN e Yt
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Note longitudes west of the prime meridian are taken as negative.
Equations (3-10) and (3-11) may be employed, using the chain rule,

to determine %% . Separate evaluations of %% are required for the linear

model (3-8) and the quadratic model (3-9). Appendix III outlines the

steps necessary in this evaluation. The results are given by (3-12) and

(3-13).

ap)1fear = :% [Fe * 9 cos 4 Fcb] * 's:eﬂ TFy (K1)
3% g:gdratic = €05 a [FS + ¢O cos 90 . F¢ + ¢0 sin 90 . Fe¢
+ ¢060 cos 60 . Fe¢ + 260 . Fee + ¢g sin 290 . F¢¢]
+§—%—e—g {F¢ + 6, Foo * 26, sin 6 * F¢¢] . (3-13)

To summarize, Method II uses the interpolated radiosonde data from
eight stations to calculate regression coefficients for the parameters
PTK and P T2K2/(2 - K ). The form of the regression modeling is

s's's s$'s s s
given by (3-8) or (3-9), The regression coefficients are then substituted
into the explicit evaluation of the derivatives %g (evaluated at p = 0).
Equation (3-12) was used for the linear model and (3-13) for the quadratic
model. Two evaluations of (3-12) or (3-13) are required; one using the

regression coefficients for PSTSKs and another using the regression

coefficients for PSTiKil(Z - Ks). GC, is then calculated by substituting

aPsTsKs ) PsTixg
the values of ———55——— " and 33-?3—:—E;7- into Equation (2-22).
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IV. RAY TRACE RANGE CORRECTIONS

The ability of GC1 to correct laser ranging data for the effects of
horizontal refractivity gradients has been investigated. GC1 was compared
with range corrections obtained by ray tracing through three-dimensional
refractivity profiles. The profiles were constructed using meteorological
data gathered in Project Haven Hop I [5]. The Haven Hop data consist of
pressure, temperature and humidity measurements obtained by radiosonde
balloons which were released from eleven different locations around the
Washington, D.C. area during January and February of 1970. The balloon
release sites are indicated on the map in Fig. 2. The balloons were
released within a few minutes of each other at various times during the
night and day and tracked to an average alt®*ude of 15 km,

At optical frequencies the phase refractivity is given by

H
] 1.6288 . 0.0136 P ) 273.15) ) e )
N = \287.604 + 2 + x" )(1013.25 ( = 11.2683 % (4-1)

where

>
L}

laser wavelength (um)
P = atmospheric pressure (mb)
T = atmospheric temperature (°K)

e = water vapor pressure (mb).
The group refractivity can be calculated from (4-1)

N =N-

. P e
g D 80.343€F()) T " 11.27 T (4=2)

where f()) is given by Eq. (2-12).
Radiosonde observations consist of temperature, pressure, and humidity

measurements taken from the surface up to the point where the balloon bursts.
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The measurements are obtained at certain standard and significant levels
during the balloon ascent. The data can be used in conjunction with

Egqs. (4-1) and (4-2) to construct refractivity profiles along the balloon
ascent path from the surface up to the point of highest measurement. Above
the latter point, the refractivity profile can be extended by assuming a

suitable temperature profile. The procedure for constructing the refracti-

vity profiles from the radiosonde data is straightforward and is discussed in

detail in Gardner and Rowlett's report [6].

Three-dimensional refractivity profiles can be constructed from the
radiosonde profiles by assuming a suitable model for the horizontal
refractivity variations. Zanter, Gardner, and Rao [4] used a linear
model which required three radiosonde profiles to determine the model
parameters. Gardner and Rowlett [6] extended the model to allow for
quadratic variations in the horizontal direction. 1In the present case the

refractivity at any point can be written in the form

N(x) = N.(h) + 8 « Ny(h) + ¢ sin 6 + N (h) + 08¢ sin 6 * Ng, (h)

¢ 0¢
2 2

2
+ 0 - Nee(h) 4+ ¢ sin“ 6 - N¢¢(h) (4-3)

where h is the altitude and & and ¢ are the colatitude and longitude of
the vector r = (h,9,4). 6 is proportional to horizontal displacement in
the north-south direction and ¢ sin 8 is proportional to horizontal dis-

placement in the east-west direction. The six coefficients Nr’ Ne, N¢,
N

Nee, and N are constant with respect to ¢ and ¢ but can change

6¢°’
with altitude.

o9

If the refractivity is known at six or more points, the coefficients
for any altitude can be calculated using multiple regression. Equipment

failures and balloon malfunctions limited the amount of acceptable
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radiosonde data to thirty-one releases involving groups of seven or eight
balloons per release. When eight radiosonde profiles were available the
quadratic model in (4-3) was employed. To reduce the error in the

regression coefficients, a four-coefficient model was employed when only

seven radiosonde profiles were avajlable.

N(r) = N (h) + 6 « N.(h) + ¢ sin 6 - N¢(h) + 64 sin 8 ¢ N, (h) . (4-4)

8¢

The phase and group refractivity at any point (h,6,¢) can be computed
from the radiosonde data using Eqs. (4-1)-(4~4). The pressure, temperature
and humidity measured by each radiosonde areused to construct continuovus
profiles of group and phase refractivity along seven or eight balloon
ascent paths using (4-1) and (4-2). The coefficients for the models in
(4-3) and (4-4) are calculated from these profiles using multiple
regression. The coefficients are substituted into (4-3) and (4-4) to
obtain the three-dimensional refractivity profiles which can then be
employed in the ray-tracirng programs.

Range corrections were computed by ray tracing through the three-
dimensional refractivity profiles. These corrections are denoted by RT3.
RT3 is dependent on azimuth since the refractivity is assumed to vary in
the horizontal direction. Therefore, azimuth was varied from 0° to 360°
in 10° increments. Ray-trace corrections were calculated for each set
of radiosonde data at 10°, 20°, 40° and 80° elevation. The laser tracking
station was assumed to be located at site 54 Iin Leonardstown, Md.

(Fig. 2). An additional range correction,RT  was also computed by ray

1
tracing through a suitable spherically symmetric profile constructed from

radiosonde data. RT3 includes the effects of horizontal gradients, while

RT1 contains no gradient effects. The difference between RT3 and RTl

~
[}
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is the range error contributed by the horizontal refractivity gradients.

Complete details of the ray-tracing procedure are available in reference [6].

i
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V. COMPARISON OF GC, WITH RANGE CORRECTIONS DERIVED FROM RAY TRACING

1

A total of 31 sets of data wsere processed to determine the accuracy

with which GC1 corrected for atmospheric refractivity gradients. Each
set employed the meteorological data from a rele.se of eight radiosonde
balloons to calculate GCl and perform ray traces. Ray-trace correction
terms were calculated for each set at 10° increments in azimuth and
elevatious of 10, 20, 40 and 80 degrees. RT3 is the e correction
obtained by ray tracing through tb-ce~dimensional ref vity profiles.

It contains the effects of horizental gradients and depends on both

azimuth and elevation. RT1 is the - ange correction obtained by ray

tracing through spherically symmetric refractivity profiles. The gradient

- RT

effects in the ranging data are isolated by calculating the term RT3 1

Any effects not compensated for by GC, are given by the e*ror term

1

A= (RT3 - RT,) - GC

l) 1

A value of GC1 was calculated for comparison with each ray trace
usin, each of the methods outlined in Section III. They are briefly
summarized as follows:

MODEL a: Use Method I to approximate the derivatives (3-1) and
(3-2) and use a quadratic model (3-3) for the surface
pressure and temperature.

MODEL b: Use Method I and employ -~ four-coe.ficient (3-4) model for

the surface pressure and temperature.

MODEL c¢: Use Method Il to evaluate thederivatives (3-12) and (3-13)

Pstxi
and use a linear model for P T K and -——— .
s 8 s ? - Ks
MODEL d: Use Method II and employ a quadratic model for PSTSKS and
P T2K2
S §S
2 -k
s
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The 31 data sets may be divided into three grours. Group A con-
sisted of 21 sets of data evaluated using modeling scheme a. Group B
consisted of 10 arbitrarily selected sets from Group A which were
reevaluated using the remaining modeiing schemes b, c¢, and d. Group C*
consisted of 10 sets of data evalvated using mod. ing scheme b, Tpe

groups and models are zummarized ir Appendix V1.

Thirty-six range corrections, RT3 (one for every 10° increment in
azimuth), were calculated for each data set at each elevation angle. A
single value of RTl was obtained for each data set at each elevation.
Therefore there were 756 values of the uncorrected gzradient errcr

RT, - RT

3 1 calculated for Group A at each elevation ar le. Similarly,

360 values of RT3 - RT1 were calculated for Groups B and C at each
eitevation angle. Table 1 gives the mean and standard deviation of

RT3 - RT1 for each group. The values of RT3 used in these calculations
employed quadratic refractivity models for groups A and B. Group C
employed a four-coefficient refractivity model. 1In addition, group B

was reprocessed using a four- nefficient refractivity mndel and given

the designation Bb in agreement with the labeling scheme for ucl.

TABLE 1.
RT3 - RT1 UNCORRECTED GRADIENT F'ROR (cm)
Elevation 10° 20° 40° 80°

Group Std Mean Std Mean Std Mean Std Mean
|
A 1.96 .01 .51 .00 .12 .00 .01 .00 |
B 1.90 -.10 .50 -.01 .12 .00 .01 .001
Bb 1.76 -.22 .46 -.03 .11 .0On .01 .00

C 1.90 -.01 .29 .01 1 .00 J .01 .00
— - | i

*Group A, B and Bb rav tr.ces were obtained using eight radiosonde profiles.
Group C ray traces were obtained using seven radiosonde profiles.
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Tables 2 through 5 give the mean and standard deviation of the residual

error A = (RT, - RT,) - G

3 1 1
Table 1 with Tables 2 through 5 indicates the standard deviation of the

for all groups and models. Comparison of

uncorrected gradient error has been reduced by almost or -half.

TABLE 2.
ERROR AFTER CORRECTION A (cm) E = 10° I
GROUP A GROVP B GROUP C
l Std Mean Std Mean Std Mean
{ Model 1.19 .06 1.17 -.03
Model 1.13 .01 1.41 -.22
Model 1.30 -.09
gModel 1.16 -.10 v
TABLE 3.
ERROR ATTER CORRECTION A (cm) E = 20°
GROUP A GROUP B GROUP C
] Std Mean Std Mean Std Mean
Model .31 .02 .31 .01
Model .36 .01 .37 -.03
| Model .31 -.01
Model L, .31 -.01
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TABLE 4.

ERROR AFTER CORRECTION A (cm) E = 40°

GROUP A GROUP B GROUP C
Std Mean Std Mean ‘ Std Mean
Model a 07 .04 .07 .00
Model b .07 -00 ! .09 -.00
Model ¢ .07 .00
Model d .07 .00
TABLE 5.
ERROR AFTER CORRECTION & (cm) E = 80° +
GROUP A GROUP B GROUP C
Std Mean std Mean Std Mean
Model a .01 .00 .01 .00
Model b .01 .00 .01 .00
Model c¢ .01 .00
! Model d .01 .00
+

L-r‘

+ . . .
Results given for models a and b use a separation distance

£o1 = 25 km. Group/M.del Bc was compared with RTq - RTy,
calculated using a quadratic refractivity profile for RTJ.

The mean and standard deviation of RT, - RT

3 1 and ) were computed for

each azimuth and elevation angle. The results for Group/Model Aa

plotted in Figs. 4 through 11. CC1 effectively removes the large

in RT3 - RTL at each azimuth. However, the reduction in the mean

uncorrected error (RT3 - RTI) has been accompanied by an increase

standard deviation of the error after correction. We believe the

are

biases

in the

increase

-
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Figure 4. Mean of RT3 - RT1 and (RT3 - RTI) - GC1 versus azimuth.

Elevation 10°. Twenty-one data sets comprising Group A.

Processed using Model a (see page 78)
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Elevation 20°. Twenty-one data sets comprising Group A.
Processed using Model a (see page 78)
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can be attributed to measurement errors in the radiosonde data which are
used to calculate GCl (see Section VI). The E = 80° curve shows the
effects of computer round-off noise in the ray-trace routine (see Gardner
and Rowlett [6]).

In evaluating GC,, Method I uses (3-1) and (3-2) to approximate he

1’
derivatives. The accuracy of this approximation would be expected to
improve as Po1 becomes small. The effect of varying 901 is shown in
Figs. 12 and 13, where corrections using Group/Models Aa, Ba, Bb and Cb
are compared. Values of A for these groups were calculated for 10°
increments in azimuth and separations Po1 = 25, 50, 100, 150, 200 and
300 kilometers. The elevation angle is 10°. For each Po1 the mean and
standard deviation of A was calculated and plotted as shown. The plots
converge for Aa, Ba and Bb at Po1 ° 25 km. 1If we examine the results in
Tables 2 through 5, and compare Models ¢ and d with Models a and b
(results for Po1 ™ 25 km are given in the tables), we see Methods I and II
give approximately the same residual errors for small Po1°

Group/Model Cb has a higher mean and standard deviation than the
other groups. Recall the radiosonde releases in Group C contained only
seven balloons per release while A and B contained eight. This degrada-
tion in the magnitude of the residuals, A, can be attributed to the
reduction in the number of monitoring stations (see Section VI). The
flatness of the curves employing the four-coefficient model is due to the
inherent linearity of the model itself. Regardless of the two points we
select on a linearly modeled PsTsKs surface, the gradient or slope will
always be a constant. Therefore we would not expect GC1 to vary with

o under this modeling scheme.

01

—— | 1 1.1
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Figure 12. Mean residual error (RT3 - RTI) - GC1 versus ¢ , for Group/

Models Aa, Ba, Bb, Cb. Group A consists of 21 data sets.
Group B consists of 10 arbitrarily selected data sets of

Group A. Groups A and B employ radiosonde releases consisting
of 8 halloons. Group C consists of 10 data sets employing

7 radiosonde balloons. Models are explained on page 78.
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A typical correctiun of two data sets from Group/Model Bd is shown
in Figs. 14 and 15 where we have plotted RT3 - RTl and A v.vrsus azimuth.

Figure 14 shows data of 1530 2/16/70 elevation 1C°. GC, was fairly

effective in reducing the gradient errors RT3 - RT The mean and standard

1
deviations of the 36 residual errors A are -.34 and .34 centimeters,
respectively. Figure 15 shows data of 1730 2/16/70. GC1 was not as
effective in this data set. The mean and standard de {ation of the
36 A's at 10° elevation are .25 and .%4 centimeters, respectively.
Figures 16 through 19 are histograms of RT3 - RT] and A for the
21 sets of data processed using Group/Model Aa. Elevations are 10 and
20 degrees. Peak gradient errors are seer to be reduced through the
addicion of GCl. Figure 20 gives the percentage of the uncorrected

errors,RT3 - RTf and the errors after corrertinn, A, less than
the abscissa wvalue for E = 10° and Group/Mode! Aa. Approximately
28 percent of the errors before correction were less than *#1 cm. A.cer
correction approximately 53 percent of the residual crrors were less than
*1 cm.

It is important to note that, regardless ci the method used to
evaluate GCl, the mean and standard deviation of the residual errors L
are comparable. Improvements in A are obtained by varying p and the
number of outlying meteorological stations. These factors must be con-
sidere¢ in establishing a ranging facility of a given accuracy. Section VI

considers the effects of varying the number of stations and errors in the

radiosonde data on the standard deviation of 4.
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VI. EFFECTS OF RADIOSONDE MEASUREMENT ERRORS
ON THE ACCURACY OF GC1

Errors in surface measurements will of course ‘ntroduce errors into
the gradient correction term. The magnitude of these effects can be
estimated from an analysis of the standard error of the regression
coefficients which were used to obtain a least-squares fit of the surface
data. The error is a function of the order of the regression polynomial
and the locations of the surface weather stations. To illustrate the
procedure we will calculate the error that would be expected using the
Haven Hop radiosonde data.

The first term in GC1 (2-22) is the most significant. Therefore

the standard deviation of GC1 can be approximated by

] . (6-1)
p=0
Jsud

C 3
sin E tan E | 3p (PsTsKs)

In the most general case the parameter PsTsKs is expanded in a two-

dimensional mth order regression polynomial

m
PTK =F= kgl B X, (6-2)

where the Xk variables are the coordinate polynomials and the Bk are the

regression coefficients. For a linear regression model we have

Xl = 1 Bl = Fr

1]
x2 =g 32 Fe (6-3)
X3 = ¢ gsin O 83 = F¢

Cm AEMEMEGas e e L
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B
p=0 kgl k 3

(P TK.)

sTsKs . (6-4)

p=0

The standard deviation of the derivative is related to the variances and

covariances of the regression coefficients by (6-3).

(P_TK) ] = ? § c 3Xk 3X (6~5)
[ s's's 0=0 Sed k=1 =1 k2 3p ap o=0
where
Cyp = cov (8,.8))
Co = Vvor (Bk)' (6-6)

The regression coefficients are calculated by measuring PsTsx8 at n >m
different weather stations. Let Fi be the ith measurement of PsTsKs which
is made at the coordinates (xil’ i2,...,)( m). Define X as the n x m matrix

containing X,, in its 1th row and j column.

i]
xll . - L] . . xlm
X=1. . (6-7)
nl . - . * - L] nm i
-
Also define the column vectors
T
F=[F,Fpe o o oo o F ]
T
B = [81,82,. e e e . "Bm] . (6-8)
The least-squaresregression solution for the B matrix is
8= &0 X . (6-9)
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The m x m variance-covariance matrix C for the regression coefficients is

given by

2

C= (g(_Tg(_)"l c (6-10)

where o is the standard measurement error of PsTsKs’ i.e., F.
In our analysis two~dimensional, first- and second-order regression
polynomials were calculated for the parameter PsTsKs. For simplicity

we will consider only the linear regression fit. The matrix §E§ is given

by
o, n __
kzl X1 Ly Bafe oLy Hae
T . n n 2 n . ~
Xx=1 1 ¥ofa kzl X2 L B (6-11)
n n n 2
G et L Ree L %

The coordinates Xl, X2 and X3 are defined in (6-3). Xy and x3 are the
horizontal displacements in the north-south and east-west directions.
Since the radius of the earth is large, we can représent XZ and x3
approximately in polar coordinates with the origin taken as the location

of site 54.

X1 = 1
X2 = p cos8 a

X3 = 5 sin a (6-12)

where o is the azimuth angle of p. Note X2 and X3 are zero at site 54.

If we let the hth measurement of PsTsKs be taken at eite 54, the XT matrix
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becomes
—
" n-il nil
n p, cos a p, shi a
k=1 k k k=1 k k
n-1 n-1 n~-1
T 2 2 2
XX= X p, €OS a 2 p, COS o X p, cos a, s8in «
| k=1 k k kel k k kel k k k
n}l nEl 2 nil 2 2
 p, sin a p, cos a, sin a p, sin” «
Lk-l k k kel |3 k k kel k k y
(6-13)

The variance-covariance matrix C is fairly easy to calculate from (6-13)
if we make some simplifying assumptions about the placement of the weather

stations. For the Haven Hop data the stations are roughly located on the

n-1
perimeter of a circle centered at site 54. If we let p = H_%—T z P and
k=1
replace p, by p, (6-13) becomes
r _ nil _ n-z'l -’
n P cos a o} sin a
k=1 k k=1 k
n-1 n-1 n-1
5;& =l p ] cos a 52 ¥ cos2 @, 52 ] cos a, sina | .
k=1 k=1 k=1
n-1 n-1 n~-1
E Z sin a 52 z cos a, sin a 52 sin2 o
k k k k
k=1 k=1 k=1 )

{6-14)
If the stations are uniformly distributed along the circle perimeter and

n is sufficiently large, the off-diagonal terms are approximately zero
-2

and summations in the diaponal terms are approximately E~£E§:—ll-. In

this case the variance-covariance matrix C is given by



e

f‘az T

—_— 0 0

n

202
c={0 - 0 . (6-15)
(n-1Dop
2

0 0 _i__-_z.
! (n-1)p
- w

The srandard error in GC1 can now be calculated by substituting (6-15)

into (6-5) and using the result in (6-1)

C 2 o
A . - / - -
PproX (Gcl)Std sin EtanE v n -1 S (6-16)

where ¢ is the standard measurement error of PsTsKs' ¢ can be expressed

in terms of the standard errors of Ps and Ts'

) 1/2
g 2 1.04 x 10731\ o 2
c=PTK |2+ 1- — . (6-17)
s s '8 2 K 2
Ps s Ts

Alternatively the error can be determined by evaluating (6-10)
exactly using the locations of the radiosonde stations in the Project

Haven Hop network.

From (6-1) and (6-~5) the standard error in GCl is
m m axk oX 1/2
C '3
CC)gea " s TamE |2, L. S 5 + o (6-18)
k=1 =] p.o

e
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The coordinate polynomials xk in (6-2) are
Xl = 1 Xa = 8¢sind
= al
Xz 0 XS 0
v 2 .2
Yy = $sind X6 = ¢ sin"@ (6~19)

The coordinate matrix X (6-7) is calculated using the xk's defined above
evaluated at the colatitude and longitude of the radiosonde release sites.
The colatitudes and longitudes are given in Appendix I. The X matrix is

then used to evaluate the variance - covariance matrix C.

c= (fz&) o o . (6-20)

C has been calculated for the Haven Hop network and is given in Appendix I
for linear, 4 coefficient, and quadratic models of PSTSKS.
If we let the ranging site be 54 and
P = 1000 mb

s
T = 275° K

w

K = .88913

g. = .7° K

o = .7mb
and substitute these values into (6-17) we obtain

o = 455.57.
The values of pressure, temperature, .nd KS are typical of the Haven Hop
data. The standard errors in pressure and temperature were obtained from
Hoidale et al.[7]. Equation (6-18) requires the derivatives of the
coordinate polynomials Xk with respect to p, evaluated at p=0.

From Appendix III they are

_..,._.
—
v e
R

-
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3X
. 1
3p =0 (6-21)
o=0
3p 0=0 r,
ifi -cusay? ) cosf, + sina
ap om0 r,
ax4 N -cosa[¢osin99 + ¢oencoseo] + eosina
3p p=0 Te
8X5 —26°cosa
dp =
D'O re
‘ 2
LR N —cosa(¢o) sin26  + 2¢ sind sina
2 =0 Te

The derivatives of (6-21) are functions of azimuth. Therefore the
estimated error, (Gcl)Std’ will have an azimut..al dependence. Eguation
(6-18) for the estimated error has been evaluated using the three models
for PsTsKs and plotted as in Figures 21, 22, and 23. On the same graphs
is the actual standard deviation of the residua. errors A for Grouwy /llodels
Bc, Bd, and Bb,respectively. The value of (Gcl)Std averaged over all

azimuths is given telow for each model.

(Gcl)Std =~ ,45 centimeters
linear
G =
( Cl)Std 46 centimeters
. 4 coefflcient (6-22)
(Gcl)Std = ,48 centimeters
quadratic

I I

-
{
|
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Figure 21. Standard deviation of (RT3 - RTI) - GC1 ‘nd the estimated

standard deviation of GC1 due to radiosonde measurement

errors of .7°C and .7 mb versus azimuth. Elevation = 10°,
Groun B consisting of 10 arbitrary data sets from Group A

processed using Model ¢ (see page 78).
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The approximate value of (Gcl)Std for a linear model is given by ]

- (6-16). Letting ne=§ ;
o = 455.57
; = 140 kilometers = mean distance of sites 51

through 58 from site 54
E = 10°

the approximate error given by (6-16) is

Approx. (GCl) = .40 centimeters. (6-23)

Std

If we neglect errors common to both the ray trace and GCl, the

total error (oA) in any evaluation of GC1 may be divided into two parts.

The first consists of errors in the formula itself (cF). The second

NIRRT e

contribution is due to errors in the radiosonde data (GD). Because
. the radiosonde data errors and the formula errors are uncorrelated,
we can write

2 = 42 -24
oy = of + of - (6-24)

2
D

From the results of (6-22) % is approximately .5 centimeters. The

St e d oo,

standard deviation of{RT3 - RTl)- GC]» g, > from Tables 1 through 4,
is approximately 1.1 centimeters. Substituting these values into (6-24),

one finds OF = 1.0 centimeters. This assumes the radiosonde data were

in fact accurate to .7°C and .7mb. Changes in the accuracy of the

radiosonde lata will affect the accuracy of GC In Figure 24 (GCl)

1’ sStd

has been replotted for various values of the relative error in PSTSKg.

By referring to the 10, 20, or 40 degree elevation axis, it is possible ]

to determine the errors in ccl due to radiosonde errors for any degree

of radiosonde accuracy and elevation angle.
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The values of O and Op used in performing the above error analysis
(.7° Cand .7 mb) were obtained from Hoidale et al [7]). It is not clear
that the Haven Hop data achieved this level of accuracy. From Figure 24,
for o, = 1.3° C and ap = .7 mb, the errors in GC1 due to radicsonde
errors (UD) would approximately equal the residual errors found in our
data (oA 21 cm). Thus a 1.3° temperature error could account for almost
the entire residual error in the corrected data.

The pressure and temperature errors inherent in the Haven Hop
data can be estimated by calculating the variance of the surface measure-~
ments about the regression polynomial. Using this approach and the 31
data sets in groups A, B and C, the pressure and temperature variances
were estimated to be 0.8 mb and 1.3°C,respectively. The estimated
pressure error is very close to the value reported by Hoidale et al.[7].
The estimated temperature error is almost twice as large as the value
reported by Hoidale but appears to be realistic. Although actual instru-
mentation errors may be only 0.7°C, terrain features and ground cover

variations could easily introduce an additional degree Centigrade or more

error. Consequently, we believe the pressure errors in the Haven Hop

data are close to the 0.7 mb value predicted by Hoidale while the temperature

errors are close to the 1.3°C value which was estimated from the regression

analysis.

GC2 was evaluated to obtain a bound on the error introduced by the
neglect of higher order terms in (2-8). Details of this evaluation are
given in Appendix V. Variations in 602 were largely due to errors in
the radiosonde data. In addition, liitle correlation was found between

GC, and the residual errors (RT3 - RTl) - GC

2 1’
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VII. CONCLUSIONS

A correction formula has been developed to correct laser ranging
data for the effects of horizontal refractivity gradients. The formula
requires the values of the horizontal pressure and temperature gradients
at the laser site. The gradients can be determined by measuring the
surface pressure and temperature at various locations around the ranging
site and using polynomial regression to obtain a least squares fit to
the surface data. The gradients can then be calculated directly from
the regression polynomial.

The accuracy of the gradient correction formula was evaluated by
comparing it with ray trace corrections. For a fixed elevation angle,
the ray trace results indicate that horizontal refractivity gradients
introduce refraction errors which a-e approximately sinusoidal functions
of azimuth. The errors are minimum near 0° azimuth (due north) and
maximum near 180° azimuth (due sovth). The average error has a peak-to-
peak variation of approximately 5 ceatimeters at 10° elevation and
approximately 1.25 centimeters at 20° elevation. The gradient correction
formula is very effective in compensating for this sinusoidal bias error.
The correction formula reduces the peak-to-peak value of the mean error
to less than 1 centimeter at 10° elevation and less than 2 millimeters
at 20° elevation.

When the gradient correction is applied to the ray trace data, the
standard deviation of the residual error is approximately 1 centimeter
at 10° elevation and 3 millimeters at 20° elevation. This residual
error appears to be due almost entirely to errors in the meteorological

data which are used to calculate the gradient correction term. The

TR T U T B
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residual error can be reduced either by using more accurate surface

data or by employing additional weather stations to obtain a more accurate
regression fit to the surface data. Temperature errors are the dominant
factor in the gradient correction formula. If an adequate weather station
network is not available, it may be sufficient to correct the ranging

data by simply subtracting the bias err. .

The analysis in this report did not consider the problem of extra-
polating weather measurements to different altitudes. This could potenti-
ally be a major error source,particularly in mountainous regions such as
California wvhere weather stations may be located at widely different

altitudes.
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APPENDIX I.

DATA USED IN THE ERROR ANALYSIS OF SECTION IV

The coordinates of the radiosonde release sites used in evaluating

the X matrix [Eq. (6-7)] are given below.

SITE 8° $°
51 50.464 -76.227
52 51.000 ~77.454
53 50.857 -75.464
54 51.643 -76.627
55 51.929 ~-78.136
56 52.500 -77.336
57 52.929 -76.345
58 52.072 ~75.409

The variance-covariance matrices using the above site coordi-
nates to evaluate Eq. (6-18) are given below for the linear, four-

coefficient, and quadratic models.

Linear Variance~Covariance Matrix

[' 549.13075 -450.52012 136.01330
¢ =l -450.52012 1457.77028 823.79511 | o2
L 136.01330 823.79511 837.66486

Four-ccefficient Variance-Covariance Matrix

r-.3{)20051.7181 -3358552.1110 2880027.4678 -3202187.2606“

-3358552.1110 3736127.9583 -3203011.0410 3561272.0384
& 2880027.4701 -3202011.0430 2747573.3137 -3054129.4350 ’

_~3202187.263 3561272.0412 =3054129.4360 3395924.6675‘
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Quadratic Variance~Covariance Matrix

[p]

[~ 4726008.
-7183493.
2840470,
5163020.

6980564.

_ 3578159.

-7183420.

20023166.

-13857120.
-19130721.

~-4292204.

2840533.
3525662.
8464536.
-2096712.
~3157613.

3128791.

5162797.
-13856861.
-2096916.
44644448,
33624389.

18191410.

6980394,
-19130570.
-3157809.
33624533.
30132794,

12957413.

3578093 ")
-4292159.

3128703.
18191508.

12957445.

9309160.

The four-coefficient and quadratic g?& matrices are ill-conditioned.

Consequently computer round off errors have made them non symmetrical.

The effects on the regression analysis are negligable.
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APPENDIX 1I.

DISTANCE AND AZIMUTH TO LATITUDE AND LONGITUDE

Evaluation of GC1 using Method 1II of Section II requires the
determination of the latitude and longitude of an auxiliary site, Point 1,
a given distance and azimuth from the ranging site, Point 0.

Let ¢o and ¢l be the longitudes of Point 0 and 1 measured from the
prime meridian. « is the azimuth of Point 1 relative to Point 0. Let
Bo and 61 be the colatitudes of Points 0 and 1. Pol is the horizontal
distance from Point 0 to Point 1 measured along the earth's surface.

From Figure II-1, C is the angle between Points 1 and 2 measured

with respect to the center of the earth.

where L is the radius of the earth. Using the law of cosines,

1Y [ .
cos O, = cos O cos ol + sin 6 sin ol cos a
1 o T o T
e e
_ 0 0 ]
6, = cos 1 cos 8_ cos _ol + sin 6_ sin ol cos .
1 o r, o r, J

Defining A¢ = ¢1 ¢° and using the law of sines,

sin 91 ) sin C

sin a  sin Ad

_ o}
A6 = sin 1[311_9_ oin 2L

sin 81 re
¢l = A + ¢°
¢, = ¢_+ sin—l sin o sin Pol . ’
1 o ) sin 91 re

s | | N R ;
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Figure II-1.

63

NORTH POLE

A¢

POINT O (8;,¢q)

Geometry used in expressing %

POINT 1 (¢,.0))

and %_as functions of p.
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APPENDIX III.

2
aF
EVALUATION OF — AND &L
p ap2
From Appendix II
1 p p B
8 = cos cos 6 cos — + 8in 8 sin — cos a (111-1)
o r o r
e e
6 =o¢ +sinlfBine o i (111-2)
o sin 6 re

where

® = colatitude of ranging site

¢ = longitude of ranging site

8 = colatitude of a point a distance p and azimuth a from
the ranging site

¢ = longitude of a point a distance p and azimuth o from the
ranging site

r = radius of the earth

a = azimuth of point 1 relative to the ranging site,

Derivative of F-linear case

Let F be a polynomial expansion of the form (6-2). For the linear

case

= . . . I -
F Fr + 8 Fe + ¢ sin 6 F¢ (I11-3)
Using the chain rule
3F _9F 39 . 3F 3¢
—— T —— e . -
W 38 Jp 3¢ dp (111-4)
To determine F it is necessary to calculate

P p=0
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e e
p=0 p=0\°" [o=c] 1°°|p=0\""|o=0] °
p P
Using (III-1) and letting x =|cos 60 cos —— + sin 60 sin — cos a
e Te
-1
36 _ 3 cos (x) _ -1 3x
ap op a - x2)1/2 ap
2 -1/2
30 P ¢
— = -11 - |lcos 8 cos — + sin 6 sin —— cos a
ap o r 4} r
. e e
-cos 60 o sin @ cos a p 1
. —sin-—-—+———°—-—cos——-
T r r T
e e e e‘J
26 -sin eo cos a 2 -1/2
5 = " 1 - cos 60
P p=0 e —
38 _ =€os a
ap 0=0 re .
Using (III-2)
;- P
3 _ 9 -1 {sin o
9p ap sin t?in 0 sin re
. ~
I sin a 1 P . i R \
=\—F— |7 jcos—sin 0 - cos 6 —— sm——-J
! 2 r r 1o} r |
\s8in e | e e i/
and letting p = 0
§$1 . _sin a
ao|p=0 re sin 60

oF aF .
25 and 30 ore determined using (11I-3).

2l

(111-5)

\

(I11-6)

(1I11-7)

(I11-8)

(1.1-9)

(111-10)

ITI-11)

3
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3F =F +¢ cos©& +F (111-12)
36 0 o o ¢
o=0
%% =sing - F, . (111-13)
p=0

Substituting (III-13), (III-12), (III-11), and (III-9) into (III-4)

sin a F
9F = €08 2 (p + ¢ cose-F)+—-———’-'
3p r ] o o ¢ r

p=0 e e

Derivative of F-quadratic case

For the quadratic case let

F = Ft +06-F +¢sin e F,_ + ¢0 sin 6 « Fe

0 ¢ ¢

2 2 2 ’
+ 6 FGB + ¢ sin” @ - F¢’ . (I1I-14)

Using the chain ruie (III-4) to differentiate (III-14)

oF €
— = ——— . . .
% % U + ¢ cos 8 F¢ + ¢ sin 8 F6¢ + ¢6 cos B F6¢
2
+ N .
, 28 Fee + ¢~ 2 sin 6 cos © F¢¢]
+ %% [sin 6 « F, + 0 sin 0 - Fy, + 2 sinZ o - Fool -
(I1I-15)
Cvaluating at p = 0 and using (III-il) and (I1I-9)
oF -CO0S a
% - [Fe + 60 cos 90 F¢ + ‘o sin 90 Fe‘
=0 e
2
+ ¢oe° cos eo . Fe¢ + 28o Fee + ¢° sin 290 F¢¢]
sin a . " .
*E (R 8, o Fgy t e, sin 8, c Fupl (111-16)
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2

Evaluation of-a—g--quadratic case
ap

The chain rule may be applied again to

(I11-4) giving

32 3%F jae\2 3°F 3¢ 3° . aF 3% . a%F 12612  aF 32
It 3] 2R a3t 2 t7ln to
2 a8l 'O L 3% ' ¢ »
vhere only nonzero terms have been retained. (I11-17)
p
Letting u = sin a sin ol
sin © r
1 e
o =9 + sin !y
~1/2
ETYPA N T
3p (- u) P
2 ~3/2 2 2 -1/2
Uow-ta-dd) T | s 8 a-dD . o
P
3p ap
) Evaluating (III-18) at p = 0, we obtain
y a2 +2 cos 80 sin a cos a o
2 = 2 2 d (III"I)
90 p=0 re sin 60
Similarly
2 -3/2 2 P2 -1/2
2
1 [ A N Y L S
p ‘ ’ $oP 30
p=0
Evaluating at p = 0
2 2
2 -3/2 sin” 8_ cos® a
AQ_% = %-(1 - c052 eo} (-2 cos 60) ——————f;r_—___.
3 p=0 re
cos 6 ~1/2
o \
. + 5 tl - COS 60,
Te
cos 6 2
. i E— (1 ~ cos™ a).
r_ sin 6
e o
l [ | I 1 | ' e
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2 2
a8 cos eo sin a
— = 3 (111-20)
ap r sin 0
p=0 e 0
*
|
When F is given as in (I1I-14), the other derivatives in (III-17) are as
given below.
SF =F +¢ cos 9 *F +F_[sin® +6 cos® ] ¢ +20 - F !
a6 0=0 0] o o (] 04 o ] o o ] 60
2
+ - -
¢0 sin 260 FO@ (I11-21)
32F
— = -¢ sin 6 _ - .
362 ¢° sin 8 F¢ + {2 cos 8, 60 sin eol F6¢
p=0
2 \
+ 2 Fee + 200 cos 26o F¢¢ (I11-22;
3F = gin® -~ F, +0 sin 68 - F + 2¢ sinz 9 - F (111-23) 2
3¢ 0=0 o % 0 o 6¢ o o ¢¢
F
32F 2
— = 2sin” 8 + F (I11-24)
a¢2 o $¢
p-O ~
BZF
03¢ =0 = cos 60'F¢ + sin eo'Fe¢ + 90 cos 80 . FGQ + 2¢°sin 290° F¢¢.
(111-25)
Substituting (I11i-9), (I1I1-11), (III-19), (I1I-20), and (III-21 through
25) into (I1I-17) and collecting terms
82F cos2 a
> =5 [-¢o sin 90 . F¢ + (2 cos 60 - 90 sin 60)¢0'Fe¢ +2 . F98
30 r
p=0 e
+ 2¢2 cos 206 =~ F
o o ¢¢ )
_2cosasina | 0§ .F 4+sin® *F. +6 cos8 =F
o ¢ o 8¢ o o 8¢ .

r2 sin 06
e o

+ 2¢O sin 260 - F¢¢ ]

#
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cos 90 sinz a
+ F,+¢ cos 0 F + (sin 8_+ 0 cos ¢ .
r2 sin 6 [6 o o ] (] o 0)‘0 F
e o
+ 206 <« F._ + ¢2 sin 26« F
o L] o o ¢
+ 2 si; a Foo
r
e

2 cos 80 cos a sin a

r2 sin
e )

+

64

[§¢ +0, ° F6¢ +2¢,sin 8 ° F‘;] . (111-26)

——

o
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APPENDIX IV. FORM OF THE STANDARL DEVIATION OF GCl

The standard deviation of GC1 is determined using the first term of

Eq. (2-22). The second te.m, which is much smaller, is neglected.
. C 3
6l "SinE tan E 3p (PsTsKs)z . (Iv-1)
p=0

For any modeling of PquKs’ GC, may be written as

1
GC1 = GN cos a + GE sin a (1v-2)
where GN is the north-south gradient correction and GE is the east-west
correction. The standard error in GC1 can be written as
: 9 2 2 1/2
(GC.) = o cos” a + 2g¢ cos a sin a + © sin” a (IV-3)
1 N NE E
std .
whe
— 2
2 2 -
° = Oy (G
s T3 2 )
- - (Cc Iv-4)
t GE (GE)
2 ——— —
“xe - OO T OO

Equation (IV-3) can be simplified by assuming that G

N and GE are uncorrelated

by
and GV” = GEZ. It seems reasonable to assume that GN and GE are uncorrelated
since the north-south gradient is primarily affected by seasonal variations

in c¢limate while the east-west gradient is essentialiy a diurnal effect. The

Haven Hop data indicate this assumption is valid so that Equation (IV-13) can

be vritten as
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2 2 1/2 2 2 1/2

”n
[y
+

(6c,) S aa S—E- cos 2a] | (1v-5)
std g, +0

The Haven Hop data also indicate oy = O 8o that Equation (IV-5) can be

approximated using the binomial theorem

(IvV-6)

(GCl) is a sinusoid of frequency 2a where a is the azimuth angle.
std

The form of (IV-6) may be compared with the standard deviation of GC1 obtained

using the data of Project Haven Hop I. In Fig. IV-1 the standard deviation
of GC1 for Group/Model Bd and an elevation of 10° has been plotted versus
azimuth. From the figure it is clear the standard deviation of GC1 contains

sinusoidal variations at a frequency 2a superimpused on a constant bias level

in agreement with (IV-6).
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APPENDIX V. EVALUATION OF GC2

An estimate of the error introduced into the gradient correction
formula (2-8) by neglecting the higher-order terms of GC can be obtained

by evaluating the second term in the series, GCZ’

2.029 £(1) 32 [FslsK

s
2 sin E taan 302 2 s p=0

1w
[

x|n

GC

. (V-1)

As in Section VI we can estimate the effect of errors in the radio-

sonde data. If we let

22 1/2
P TZKZ {a ag o 2\
G” = S's s T + P
2 - Ks \T 2 P 2} (v-2)
s s
where
-3 2Ts Ts
a=2- 1,046 x 10 E——-+151:j;‘ ’
s s

then the estimated standard deviaticu of G.2 is

s o 1/2
2,029 £() |® B ¥X X )
6c) === |l I Gy (v-3)
Std sin E tan'E (k=1 f=1 9p ap p=0

Equations (V-1) through (V-3) were calculated for quadratic modeling

2.2
of PsTsKs and
2 -K
]
P = 1000 mb
s
T.= 275° K
s
K= ,88913
5

. W
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= -]
9p .7° K

" c = .7 mb
P

E =10° .

The derivatives of the coordinate polynomials are available from Appendix III.
The variance-covariance matrix C and the colatitude and longitude of the
release sites are given in Appendix I.

GC2 was evaluated using (V-1) and the radiosonde data of Group/Model Bd.
For each azimuth the standard deviation of GC2 was computed. The estimated

standard deviation of GC2 given by (V-3) and the actual standard deviation

of GC2 have been plotted versus azimuth in Figure (V-1). Both curves are on

the same order of magnitude. This indicates errors in the radiosonde

2° The mean of GC2 was
2 and A = (RT3 - RTl) ~ GC1 for data

of 0930 1/26/70. The figure shows little correlation between GC2 and the

data are primarily responsible for variations in GC

approximately -4 mm. Figure V-2 shows GC

residual errors A.
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APPENDIX VI. SUMMARY OF PROCESSED DATA SETS AND MODELS

A brief summary of the processing methods is given in Table VI-1

below.
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Table VI-1. Pr~cessing Methods and Data Sets of Section V.
Ray trace
Group/ Number of Number of radio~ Regression model Calculation refractivity
Model data sets sonde balloons for surface data of darivatlve model
Aa 21 8 Quadratic Approximate Quadratic
Method I
Ba 10 8 Quadratic Approximate Quadratic
Method I
Bb 10 8 Linear plus Approximate Linear plus
cross term Method I cross term
Be 10 8 Linear Exact Method Quadratic
II
Bd 10 8 Quadratic Exact Method Quadratic
IT1
Cb 10 7 Linear plus Approximate Linear plus
cross term Method I cross term

i L
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